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Abstract. The general structure of kink manifolds in (1+ 1)-dimensional complex scalar field
theory is described by analysing three special models. New solitary waves are reported. Kink
energy sum rules arise between different types of solitary waves.

1. Introduction

Kinks are topological defects arising in several domains of physics. They exists in one-
dimensional condensed matter systems, polyacetilen being an example [1], and induce exotic
phenomena such as electric charge fractionization. In hydrodynamics [2], kinks are solitary
waves of a special kind, for example shockwaves in fluids. In a (3+ 1)-dimensional
spacetime, kinks are non-dispersive solutions of the field equations independent of two
of the three spatial coordinates; in this disguise of domain walls, kinks also play a very
important role in cosmology [3].

In this paper we shall focus on the theoretical study of kinks in relativistic (1+ 1)-
dimensional scalar field theory. The systems we shall consider thus have an associated
energy-momentum tensor and we shall stick to the definition of solitary waves given in [4]:

A solitary wave is a non-singular solution of the nonlinear coupled field equations of
finite energy such that their energy density has a spacetime dependence of the form

ε(x, t) = ε(x− vt)
wherev is some velocity vector.

In models with a single real scalar field in (1+1) dimensions, much is known about these
peculiar lumps both at the classical and quantum levels. When the field theory involved
encompasses several scalar fields, however, the search for kinks and the study of their
properties become much more problematic. To undertake such an enterprise is not merely
an academic problem: the order parameters distinguishing the different phases of liquid
crystals, [5], are scalar fields in vector—or tensor—irreducible representations of the O(N)

group. Thus, kink solutions correspond to one-dimensional topological defects present in
this kind of physical system.

Rajaraman [4] envisaged a trial orbit method to find new kinds of kinks in the so-
called MSTB model [6], having no analogues in one-component scalar field theory. The
model describes the dynamics of a complex scalar field by means of an action which is a
deformation of the O(2)-linear sigma model. Instead of spontaneous symmetry breaking of
O(2) by a degeneratedS1 vacuum manifold the O(2) symmetry group is explicitly broken
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to Z2 by a mass term; only invariance underφ→−φ survives. From the point of view of
quantum field theory, this deformation is very natural because in (1+1) dimensions infrared
divergences forbid the existence of Goldstone bosons, according to a theorem of Coleman
[7]. Even if it is absent in the classical action, a mass term will be generated by quantum
corrections.

For time-independent configurations the field equations become ordinary differential
equations. The search for kinks is therefore tantamount to a dynamical system of Lagrangian
type where the energy of the static configurations of the field theory becomes the action.
Rajaraman realized that kinks correspond to very special trajectories in the associatedN -
dimensional mechanical problem, whereN in the number of scalar fields. Separatrices
between bounded and unbounded motion in the mechanical system are in one-to-one
correspondence with kinks in the scalar field theory. The trial orbit method is a procedure
used to elucidate whether a given trajectory is a separatrix but does not provide a general
scheme to find all the kinks. Moreover, whenN > 2 the method becomes very cumbersome.

The total manifold of kinks in the MSTB model was described for the first time by
Magyari and Thomas [8], who noticed that the dynamical system was indeed Hamiltonian
and integrable. They used the method of commuting Hamiltonian flows as proposed by
Hieratinta and Fordy [9] to show that, at least implicitly, all the trajectories are known
and one needs only to impose asymptotic conditions in an appropriate way to obtain the
separatrices. In a seminal paper, Ito [10] gave a complete analytical treatment of the kink
manifold by observing that the Hamiltonian system describing kinks as special trajectories is
separable into elliptic coordinates and applying the Hamilton–Jacobi method. In particular,
a very awkward kink energy sum rule, established previously as a quasi-empirical fact, was
fully explained.

The aim of this paper is to show that the MSTB model, enjoying such interesting
physical and mathematical features, is not unique. Here we shall propose and study two
models that we call, respectively, A and B to find that they share all the peculiarities of the
MSTB model. Model A is a deformation of the Chern–Simons linear sigma model where
the potential energy density is of the form appearing in Chern–Simons–Higgs planar gauge
systems [11]. As in the MSTB model there is a deformation parameter varying in a finite
range such that a generalized conserved charge, which tends to the SO(2)-isospin generator
when the parameter goes to zero, still exists. Model B is a different deformation of the
O(2)-linear sigma model from that leading to the MSTB model. A conserved charge also
arises but only for a single value of the deformation parameter.

The unifying property of all these three models is that the dynamical systems associated
with the search for kinks are completely integrable. They are separable by using either
elliptic coordinates—models MSTB and A—or parabolic coordinates—model B. The
dynamical systems are thus Liouville integrable mechanical models of type I (models MSTB
and A) and type III (model B) see [12]. Automatically, kink energy sum rules occur as a
characteristic of these very special field theories.

Following the present trend of studying manifolds of quantum field we shall analyse how
general structures are shared by the different models. The renormalization group flow in the
parameter space meets these special models when a hidden, nonlinear, ‘deformed’ isospin
charge is conserved even though the O(2)-symmetry is explicitly broken. Spontaneous
symmetry breakdown of continuous groups is forbidden by Coleman’s theorem because
Goldstone bosons cannot exist. Models A and B, as well as the MSTB model, are not
invariant with respect to the O(2) group and do not have a continuous vacuum manifold
as requested by Coleman’s theorem in (1+ 1)-dimensional field theory. However, they do
retain some invariance properties of a new kind in field theory. There are strong analogies
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with the Zamolodchikovc-theorem [13]: deformations in conformal field theory models
leading to integrable models are the most interesting ones. Despite the appearance of
massive particles breaking the conformal symmetry the ‘special’ systems are solvable due
to the existence of a hidden infinite-dimensional symmetry group.

This paper is organized as follows. In section 2 we introduce models A and B, discuss
their configuration spaces and particle spectra and recall the kink manifold of the MSTB
model. Section 3 is devoted to the analysis of the kink manifold of models A and B and
the statement of the new kink energy sum rules. Finally, in section 4 we briefly comment
on several extensions of this work.

2. Models A and B versus the MSTB model

We shall look at (1+ 1)-dimensional complex scalar field theory models with dynamics
governed by the action

S =
∫

d2y { 12∂µχ∗∂µχ − V̄ (χ∗, χ)}
here,χ(yµ) = χ1(yµ) + iχ2(yµ) is a complex scalar field and we choose the metricgµν ,
µ, ν = 0, 1 to be of the formg00 = −g11 = 1, g12 = g21 = 0 in two-dimensional Minkowski
space. Models A and B differ in their potential energy densities:

model A V̄A = λ4

4m2
χ∗χ

(
χ∗χ − m

2

λ2

)2

+ β
2

2
χ2

2

(
χ∗χ − m

2

λ2

(
1− β2

2λ2

))
model B V̄B = λ2

2

(
4χ2

1 + χ2
2 −

m2

λ2

)2

+ 2λ2χ2
1χ

2
2 .

This is to be compared with the MSTB model where the choice of potential energy density
is:

V̄MSTB = λ2

4

(
χ∗χ − m

2

λ2

)2

+ β
2

4
χ2

2 .

The λ, m andβ coupling constants are of inverse length dimension.
We study the rangeβ2 < λ2 in parameter space because in this regime the structure of

the kink manifold is richer. Introducing non-dimensional variablesχ → m
λ
φ, yµ →

√
2
m
xµ,

β2

λ2 → σ 2 and β2

m2 → γ 2, we find simpler expressions for the action:

S = m2

λ2

∫
d2x

{
1

2
∂µφ

∗∂µφ − V (φ∗, φ)
}

VA = φ∗φ
2
(φ∗φ − 1)2+ σ 2φ2

2

(
φ∗φ − 1+ σ

2

2

)
VB = (4φ2

1 + φ2
2 − 1)2+ 4φ2

1φ
2
2

VMSTB = 1

2
(φ∗φ − 1)2+ γ

2

2
φ2

2.

(1)

2.1. Configuration space and particle spectra

For the set of time-independent configurationsφ(x0, x1) = f (x1) the energy functional is:

E = m3

√
2λ2

∫
dx1

{
1

2

df ∗

dx1
· df

dx1
+ V (f ∗, f )

}
. (2)



212 A Alonso Izquierdo et al

The configuration space is the set of mapsf : R→ C such thatE < +∞: C = {f (x1)/E <

+∞}. This requiresf to be continuous and satisfy the asymptotic conditions:

lim
x1→±∞

df

dx1
= 0 lim

x1→±∞
f (x1) = v (3)

wherev is a constant belonging toM, the set of zeros ofV . Note that in our modelsV is
always semidefinite positive.

In all three cases, the setM is discrete:

MMSTB ≡ Z2 = {v(±)MSTB = ±1}
MA ≡ Z2 t Z2 t e = {v(±1)

A = ±1, v(±i)A = ±iσ̄ , v(0)A = 0}
MB ≡ Z2 t Z2 = {v(±1)

B = ± 1
2, v

(±i)
B = ±i}

where σ̄ = √1− σ 2. We refer toM as the vacuum manifold because in the quantum
version of the theory points inM are the expectation values of the quantum field operator
at the ground states or vacua of the system. The vacuum degeneracy—i.e. the existence of
more than one element inM—is related to the symmetry breaking. In our models, besides
two-dimensional Poincaré invariance, there is a global or internal symmetry with respect to
the discrete groupG = Z2 × Z2 generated byφ1 → −φ1 and φ2 → −φ2. The vacuum
manifold is in general the orbit of one element by the group action. In our model, however,
M is the union of several orbits:

MMSTB = G/Hv(±) = Z2

MA = G/Hv(±1)
A
tG/H

v
(±i)
A
tG/H

v
(0)
A
= Z2 t Z2 t e

MB = G/Hv(±1)
B
tG/H

v
(±i)
B
= Z2 t Z2

whereHv is the little group of the vacuumv and it is the surviving symmetry group when
quantizing aroundv. Unlike the MSTB model, the moduli space of vacuaM0 = M/G

has more than one element in models A and B:

M0
A =MA/G = e t e t e M0

B =MB/G = e t e.
The zeros ofV are also critical points in our models satisfying:

∂V

∂φa

∣∣∣∣
φ=v
= 0.

Therefore, they are constant solutions of the field equations

�φa = − ∂V
∂φa

a = 1, 2. (4)

Small deformations ofφ0(x) = v that are still stable solutions of (4) corresponds in the
partner quantum theory to the fundamental quanta. The pattern of symmetry breaking arises
as follows

φv(κ; x) = v +
∑
κ

a(κ)eiκx κ = (κ0, κ1) (5)

is a plane wave solution of (4) if the dispersion relation

δab(κ
0)2 = (κ1)2δab +M2

ab(v) M2
ab(v) =

∂2V

∂φa∂φb
(v)

holds.M2
ab(v) is therefore the mass matrix at the chosen critical point and the symmetry of

the ‘particle’ spectrum is preciselyHv. Note that allv ∈M under discussion are minima of
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V ; hence there are no negative eigenvalues ofM2
ab(v) and the small deformation solutions

(5) around the constant minimav depend on time as: eiκ0x0
, i.e. do not increase without

bounds in time.
Understanding our models as physically describing the continuum approximation to a

one-dimensional crystal with a two-component order parameter the ‘particle’ spectra are as
follows.

(1) There is one phase with two phonon branches in the MSTB model:

M2(v
(±)
MSTB) =

(
4 0
0 γ 2

)
m2

2
.

(2) There are three phases with two phonon branches per phase in model A:

M2(v
(±1)
A ) =

(
4 0
0 σ 4

)
m2 M2(v

(±i)
A ) =

(
σ 4 0
0 4σ̄ 4

)
m2

M2(v
(0)
A ) =

(
1 0
0 σ̄ 4

)
m2.

(3) Two phases with two phonon branches per phase form the particle spectrum of
model B:

M2(v
(±1)
B ) =

(
32 0
0 2

)
m2 M2(v

(±i)
B ) =

(
8 0
0 8

)
m2.

The symmetry groupG = Z2 × Z2 is broken by the choice of thev(±) vacuum to
theH ≡ Z2 subgroup:φ2 → −φ2 in the MSTB model. The two phonon branches have
different masses or ‘energy gaps’, even at the continuous symmetryγ 2 = 0 limit. In model
A there are three cases: (a) when the vacuum isv

(0)
A , the symmetry underG = Z2 × Z2

is unbroken: there is no degeneracy in the particle spectrum because the internal O(2)
symmetry is explicitly broken toG = Z2 × Z2 by the σ 2φ2

2(φ
∗φ − 1+ σ 2

2 ) term in the

Lagrangian. (b) The choice ofv(±1)
A spontaneously breaks theG = Z2 × Z2 symmetry to

H1 ≡ Z2 : φ2→−φ2. (c) If we choosev(±i)A as the little group and the unbroken symmetry
is Hi ≡ Z2 : φ1→ −φ1. In model B one can choose either, (a)v(±1)

B with little groupH1,
or, (b) v(±i)B , little groupHi , as the vacuum. The degeneracy of the spectrum on the vacua
v
(±i)
B is accidental: it is due to the very special behaviour of the potential density energy

around those points.
We can look at the MSTB and B models as members of the family characterized by the

potential energy densities:

V (φ∗, φ) = 1

2
(α1φ

2
1 + α2φ

2
2 − 1)2+ β

2
1

2
φ2

1 +
β2

2

2
φ2

2 +
γ 2

1

4
φ4

1 +
γ 2

12

2
φ2

1φ
2
2 +

γ 2
2

4
φ4

2

where α1, α2, β
2
1, β

2
2, γ

2
1 , γ

2
12 and γ 2

2 are ‘bare’ non-dimensional parameters. Ultraviolet
divergences are controlled by normal ordering in the quantum theory, but the need arises to
introduce a renormalization ‘point’µ2 and the dependence of the renormalized parameters
onµ2 is determined by the renormalization group equation. One special solution, a specific
renormalization group flow, might lead to the ‘point’:

αR1 (µ
2) = αR2 (µ2) = 1 (βR1 )

2 = (βR2 )2 = (γ R1 )2 = (γ R12)
2 = (γ R2 )2|µ2 = 0

in the space of quantum field theory models in the family. This point corresponds to the
linear O(2)-sigma model which enjoys a continuous symmetry groupG = O(2). The
vacuum orbit is, however,S1, and this means that there is no unbroken symmetry. One
checks, looking at the particle spectrum of the MSTB model at the limitγ 2 = 0, that there
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is a massless particle, a Goldstone boson, as expected when there is spontaneous symmetry
breaking of continuous transformations.

Coleman [7] established that in (1+ 1) dimensions the infrared asymptotics of the
two-point Green functions of a quantum scalar field forbids poles atκ2 = 0; there are no
Goldstone bosons in (1+1) dimensions. It is thus impossible to reach the O(2)-sigma model
in the renormalization group flow. The closest point to this is the model characterized by:

αR1 (µ
2) = αR2 (µ2) = 1, (βR2 )

2(µ2) = γ 2;βR1 (µ2) = γ R1 (µ2) = γ R12(µ
2) = γ R2 (µ2) = 0

i.e. the MSTB model. Even though the ugly termγ
2

2 φ
2
2 would not be present at the classical

level, quantum fluctuations would generate it. In the next section we shall see that this
point where the otherβ- andγ -renormalized parameters are zero is a very particular one;
in the 0< γ 2 < 1 range there is a very rich manifold of kinks. Model B corresponds to
another interesting point with similar features,

αR1 (µ
2) = 4

√
2 αR2 (µ

2) =
√

2 (γ R12)
2(µ2) = 8

βR1 (µ
2) = βR2 (µ2) = γ R1 (µ2) = γ R2 (µ2) = 0

although in this case it is really a point, not an interval as in the MSTB model.
A completely analogous analysis informs us that model A is a deformation of the

Chern–Simons O(2)-sigma model characterized by:

V (φ∗, φ) = φ∗φ
2
(φ∗φ − 1)2.

This is theσ 2 = 0 limit of model A with a O(2) continuous symmetry group and a
vacuum manifoldM = S1 t { point}. In the non-symmetric phase there are Goldstone
bosons, look at the particle spectrum onv(±1)

A and v(±i)A , which cannot exist in quantum
theory and the renormalization group flow leads to model A. As in the MSTB model there
is a range, 0< σ 2 < 1, where we shall find an interesting manifold of kinks.

2.2. Configuration space topology and kinks

The configuration spaces of our models are the union of topologically disconnected sectors,
see [14]; C = ⊔N

α,β=1 Cαβ , whereN is the order ofM. This comes from the identity
π0(C) = π0(M) between the zeroth-order homotopy groups ofC andM, and, in turn, is
due to the asymptotic conditions (3). We find in our models:π0(CMSTB) = Z2, π0(CA) = Z5

andπ0(CB) = Z4. Accordingly, there exist topological charges,

QT
a =

∫ ∞
−∞

dx
dφ̂a
dx
= φ̂a(∞)− φ̂a(−∞)

labelling the homotopy classes; here,φ̂a = φa
|va | and |va| are normalization constants given

by the a component of thev(α) vacuum, see below. Therefore,CMSTB =
⊔2
α,β=1 C

αβ

MSTB,

CA =
⊔5
α,β=1 C

αβ

A and CB =
⊔4
α,β=1 C

αβ
B if α and β tell us the vacua reached at±∞:

v(α) = φ(−∞) andv(β) = φ(∞).
The splitting of the configuration space into four disconnected sectors is not the only

non-trivial topological feature of the MSTB model. The very rich topological structure
of CMSTB was thoroughly analysed [14, 16] in a series of papers. Morse theory ofCMSTB

revealed itself as a powerful tool in the study of both the classical and quantum dynamics of
the MSTB model. We shall postpone a parallel study in models A and B to future research.
Instead, we shall now focus on searching for time-independent finite-energy solutions of
the field equations which are not spatially homogeneous. Some of them live in sectors with
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non-zero topological charges and are therefore unable to evolve in time to vacuum solutions
enjoying topological stability. Others belong to vacuum sectors with a more obscure origin
from the topological point of view.

Besides complying with (3), solitary waves satisfy the system of ordinary differential
equations

d2fa

d(x1)2
= ∂V

∂fa
(6)

whereφa(x0, x1) = fa(x1). To solve system (6) together with the boundary conditions (3)
is tantamount to finding the solutions of the Lagrangian dynamical system in whichx1 = τ
plays the role of time, the ‘particle’ position is determined byfa(τ ), and the potential energy
of the particle isU(fa) = −V (fa).

The static field energy is from this perspective the particle action

J =
∫

dτ

{
1

2

dfa
dτ
· dfa

dτ
− U(fa)

}
and trajectories of finite action,J , in the mechanical problem are in one-to-one
correspondence with solitary waves, kinks, of energyE = J . Of course, the mechanical
analogy is very helpful when one is dealing with a real scalar field because, then, the
mechanical system always has a first integral, which is all that we need to find all the
solutions. Vector scalar fields ofN components lead toN -dimensional dynamical systems
which are seldom solvable. Magyari and Thomas [8] realized that the two-dimensional
dynamical system arising in connection with the MSTB model is a completely integrable
one in the Liouville sense. Moreover, Ito [12] has shown that the mechanical system is
Hamilton–Jacobi separable, finding all the trajectories, and hence all the kinks of the MSTB
model.

In this case,

J =
∫

dτ

{
1

2

dfa
dτ
· dfa

dτ
+ 1

2
(fafa − 1)2+ γ

2

2
f 2

2

}
and the motion equations of the particle are:

d2fa

dτ 2
= 2fa(fbfb − 1)+ δa2γ

2f2 (7)

to be solved together with the asymptotic conditions

lim
τ→±∞ fa(τ ) = ±δa1 lim

τ→±∞
dfa
dτ
= 0. (8)

It is convenient to pass to Hamiltonian formalism. The canonical momentapa(τ) =
δJ
δfa
(τ ) = dfa

dτ together withfa(τ ) are local coordinates in phase space. We must bear

in mind thatpa(τ) ≡ dφa
dx1 when going back to the field theory. The mechanical Hamiltonian

I1 = 1

2
papa − 1

2
(fafa − 1)2− γ

2

2
f 2

2

leads to the canonical equations, equivalent to (7),

dfa
dτ
= {I1, fa} dpa

dτ
= {I1, pa}

where the Poisson bracket is defined in the usual way

{F,G} =
2∑
a=1

(
∂F

∂fa
· ∂G
∂pa
− ∂F

∂pa
· ∂G
∂fa

)
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for any two functionalsF(fa, pa), G(fa, pa) in phase space.
Obviously dI1

dτ = 0, but our dynamical system has a second invariant

I2 = (f1p2− f2p1)
2+ γ

2

2

{
p2

1 − p2
2 − (f 2

1 − 1)2+ f 2
2

(
f 2

2 − 2

(
1− γ

2

2

))}
(9)

dI2
dτ = 0, which is in involution with the Hamiltonian:{I1, I2} = 0. According to Liouville’s
theorem, the two-dimensional mechanical system is completely integrable, all the trajectories
can be found, and those with asymptotic behaviour given by (8) will correspond to the
solitary waves of the parent scalar field theory.

At this point we pause to explain the singularity of the MSTB model. Theγ 2

2 φ
2
2 term

explicitly breaks the O(2)-symmetry of the linear sigma model, theγ 2 = 0 limit. In the
mechanical system the O(2) ‘internal’ transformations become spatial rotations. Therefore,
whenγ 2 6= 0, the angular momentum,

j12 = f1
df2

dτ
− f2

df1

dτ

conserved at the limitγ 2 = 0, is no longer ‘time’ independent. There is, however, a
second invariant,I2 = j2

12+ γF(fa, pa) becoming the square ofj12 for γ 2 = 0, and the
deformation meant by the MSTB model is special because it still retains enough symmetry
to solve the mechanical system. There is no Lie algebra associated withI2, because since
the invariant is quadratic infa, pa the action on the phase space, given by{I2, fa} and
{I2, pa}, is nonlinear.

From the point of view of (1+1)-dimensional field theory, the energy-momentum tensor

T µν = ∂L
∂(∂µφa)

· ∂νφa − gµνL

is divergenceless,

∂µT
µν = 0

irrespective of the non-zero value ofγ 2. Pµ = ∫
dx1 T 0µ are thus conserved quantities.

The O(2) ‘isospin’ current

Jµ = εabφa∂µφb
is only divergenceless at the limitγ 2 = 0 andQ = ∫ dx1 J 0 is not conserved for non-zero
γ 2. At the static limit, we haveT 00 = E = J , T 10 = T 01 = 0, T 11 = I1, J 0 = 0 and
J 1 = j12.

Defining a deformed isospin current such that

J 1
γ J

1
γ = I2 J 0

γ J
0
γ = L2

whereL2 is

L2 = 1

2
J 0J 0+ γ

2

2

{(
∂φ1

∂x0

)2

−
(
∂φ2

∂x0

)2

− (φ2
1 − 1)2+ φ2

2

(
φ2

2 − 2

(
1− γ

2

2

))}
we expect some equation

F

(
∂L2

∂x0
,
∂I2

∂x1

)
= 0

of a nonlinear character going to∂J
0

∂x0 = ∂J 1

∂x1 when γ 2 goes to 0. We find a very similar
situation to that occurring between conformal field theories and models with infinite-
dimensional algebra as in (1+ 1)-dimensional Toda field theories and Toda affine models
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[15]. There are two differences: (1) the conformal group is infinite dimensional in (1+ 1)
dimensions. We have only one finite-dimensional group O(2) so that we can only solve the
static limit of the field theory model. (2) Due to the nonlinear character of the deformation
of the O(2) Lie generator we do not have even a finite-dimensional algebra.

Returning to the mechanical system, it is known, see [12], that it is not only integrable
but Hamilton–Jacobi separable. Introducing ‘elliptic’ coordinates,

f1(τ ) = 1

γ
u(τ)v(τ ) f2(τ ) = 1

γ

√
(u2(τ )− γ 2)(γ 2− v2(τ ))

v ∈ [−γ, γ ] u ∈ [γ,+∞)
the ‘action’ J is

J =
∫

dτ

{
1

2
(u2− v2)

[
1

u2− γ 2

(
du

dτ

)2

+ 1

γ 2− v2

(
dv

dτ

)2 ]
+ 1

2(u2− v2)
[(u2− 1)2(u2− γ 2)+ (1− v2)2(γ 2− v2)]

}
. (10)

Formula (10) informs us that the ‘action’J depends onu andv in a completely separated
form.

This point is of better use in the Hamiltonian formalism. The generalized momenta

pu = ∂L

∂u̇
= u2− v2

u2− γ 2
u̇ pv = ∂L

∂v̇
= u2− v2

γ 2− v2
v̇

lead to the Hamiltonian,

h = 1

u2− v2
(hu + hv)

where

hu = 1
2(u

2− γ 2)p2
u − 1

2(u
2− 1)2(u2− γ 2)

hv = 1
2(γ

2− v2)p2
v − 1

2(1− v2)2(γ 2− v2).

In the phase space submanifold determined byh = i1, wherei1 is a constant of motion, we
havehu − i1u2 = −hv − i1v2 = i2, with i2 another constant of motion. It is clear from the
analysis that the two invariants,I1 andI2, are related toh andhu. Obviously,i1 = I1 while

i2 = −I2− γ 2I1.

The Hamilton–Jacobi equation

∂J

∂τ
+H

(
∂J

∂u
,
∂J

∂v
, u, v

)
= 0

is completely separable

1

2
(u2− γ 2)

(
dJu
du

)2

− 1

2
(u2− 1)2(u2− γ 2)− i1u2 = i2

1

2
(γ 2− v2)

(
dJv
dv

)2

− 1

2
(1− v2)2(γ 2− v2)+ i1v2 = −i2

(11)

by writing J = Ju(u)+ Jv(v)− i1τ . The solution of (11)

Ju = sign

(
du

dτ

)∫
du

√
2i2+ 2i1u2

u2− γ 2
+ (u2− 1)2

Jv = sign

(
dv

dτ

)∫
dv

√
−2i2− 2i1v2

γ 2− v2
+ (1− v2)2
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gives the action of the trajectories. The Hamilton–Jacobi principle also offers the equation
satisfied by the trajectories developed by the dynamical system: ifβ1 ∈ R is a constant,
∂J
∂i2
= β1 means that

signu̇
∫

du√
2i2+2i1u2

u2−γ 2 + (1− u2)2(u2− γ 2)

= β1

+ signv̇
∫

dv√
−2i2−2i1v2

γ 2−v2 + (1− v2)2(γ 2− v2)

. (12)

We do not attempt to integrate (12) in the general case but focus on the valuesi1 = i2 = 0
which correspond to finiteJ action. These special trajectories, complying with (8), are thus
the kinks of the original field theory having finite energyE = J . The kink manifold of the
MSTB model is in one-to-one correspondence with the solutions of the equations∣∣∣∣∣ (u+ 1)(u− γ ) 1

γ

(1− u)(u+ γ ) 1
γ

∣∣∣∣∣
sign(u̇) ∣∣∣∣∣ (1+ v)(γ − v)

1
γ

(1− v)(v + γ ) 1
γ

∣∣∣∣∣
sign(v̇)

= d (13)

parametrized byd = exp{2β1(1− γ 2)} and the signs oḟu and v̇.
The trajectory flow

du

dv
= sign(u̇)

signv̇

(1− u2)(u2− γ 2)

(1− v2)(γ 2− v2)

is undefined at the points:

u v

v1 : 1 −γ
v2 : 1 γ

focus : γ γ

focus : γ −γ.
The ground statesv1 andv2 of the field theory are unstable points of the Hamiltonian

flow where an infinite number of trajectories starts atτ = −∞ and ends atτ = +∞. The
‘time’ table for the orbits is also provided by the Hamilton–Jacobi method:

∂J
∂i2
= β2, whereβ2 ∈ R is another constant, implies

−τ + signu̇
∫

u2 du√
2i2+2i1u2

u2−γ 2 + (1− u2)2(u2− γ 2)

− signv̇
∫

v2 dv√
−2i2−2i1v2

γ 2−v2 + (1− v2)2(γ 2− v2)

= β2.

The solution fori1 = i2 = 0 is∣∣∣∣ (1+ u)(u− γ )γ(1− u)(u+ γ )γ
∣∣∣∣sign(u̇) ∣∣∣∣ (1+ v)(γ − v)γ(1− v)(γ + v)γ

∣∣∣∣sign(v̇)

= e2(1−γ 2)(β2+τ). (14)

Numerical analysis, see figure 1, tells us that for regular, finite, values ofβ1 andβ2 all the
trajectories are homoclinic, i.e. they start and end at the same unstable pointv(±) with zero
momentum. They are infinitely degenerated and intersect at other points, where the flow is
undefined, the foci of the ellipse:

f 2
1 +

f 2
2

1− γ 2
= 1.
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Figure 1. Kink trajectories in the MSTB model. (a) Cartesian plane: paths starting and ending
in v2 which intersect at the focus(0, σ ) are shown. (b) Elliptic plane: trajectories with both
v1 and v2 taken as initial/final points are drawn. The focus(σ,−σ) is the conjugate point to
v1 = (1,−σ), while the other focus(σ, σ ) andv2 = (1, σ ) are conjugate points with respect to
each other.

The integration constantβ1 is related to the tangent of the orbit at the focus through
which it passes; the velocity of the particle describing a given orbit is determined byβ2.

From the point of view of field theory, there is a nonlinear solitary wave for each
trajectory given by (13) and (14).

The topological charge is zero for the whole family and each member is a non-
topological kink of two components, bothφ1 andφ2 are different from zero:

QT
a [NTK2(v1;β1)] = QT

a [NTK2(v2;β1)] = 0.

The kink manifold, parametrized byβ1, therefore lives inC++0 and C−−0 and the
translational mode of each solitary wave is given byβ2.

There are also heteroclinic trajectories which arise in the limitβ1 = ∞; they start from
v(±) and end at the opposite point,v(∓). The corresponding kinks and antikinks are both of
one and two components and are topological:

f TK1(x) =
(

tanh(x − x0)

0

)
f AK1(x) =

(− tanh(x − x0)

0

)
f NTK2(x) =

(
tanhγ x
γ̄ sechγ x

)
f AK2(x) = −

(
tanhγ x
γ̄ sechγ x

)
f NTK2∗(x) =

(
tanhγ x
−γ̄ sechγ x

)
f AK2∗(x) = −

(− tanhγ x
γ̄ sechγ x

)
.

They thus live inC+−1 or C−+1 :

QT
1(φ

NTK2) = QT
1(φ

NTK2∗) = QT
1(φ

TK1) = 1

QT
1(φ

AK2) = QT
1(φ

AK2∗) = QT
1(φ

AK1) = −1.

All solitary waves, non-topological and topological kinks and antikinks, come from
trajectories that are separatrices between bounded and unbounded motion in phase space.

The envelope of the separatrices, itself a separatrix, is formed by the ellipseφ2
1+ φ2

2
1−γ 2 = 1;

the corresponding solitary waves are two-component kinks. Also, the interval inside the
ellipse on the real axisφ2 = 0 is special: it is the steepest descent path and gives the
one-component kink.



220 A Alonso Izquierdo et al

3. Kink energy sum rules

The energy of any kink is the action of the corresponding trajectory:E = Ju + Jv.

E =
[

signu̇
∫

du (1− u2)+ signv̇
∫

dv (1− v2)

]
.

For all the non-topological kinks, we find a degeneracy in energy:

ENTK2 =
√

2m3

λ2

[
2

3
+ γ

(
1− γ

2

3

)]
.

The topological kinks have energies,

ETK1 = 2

3
·
√

2m3

λ2
ETK2 =

√
2m3

λ2
· γ
(

1− γ
2

3

)
.

The kink energy sum rule arises:

ENTK2 = ETK1 + ETK2.

This means that the trajectory TK1+TK2 is a limiting case of the family NTK2, with an
appropiate time rescaling, and leads to the Morse theory interpretation of [14]. A geometric
perspective of the sum rule is interesting: we can consider the kink trajectories as geodesics
in the Jacobi metric

ds2 = 2(i1+ V ) df a df a

for the special valuei1 = 0. The length of each trajectory

l =
∫

dτ

√
gab(f1, f2)

dfa
dτ
· dfb

dτ

in theu : v plane endowed with the Jacobi metricgab = 2V δab is equal toE, above:E = l.
Therefore, we see the energy of TK2 as the length of the straight line joiningv1 andv2 in
figure 1 measured with this particular metric.Simili modo, the energy of TK1 is the sum
of the lengths of the other three straight lines forming the rectangle with cornersv1, v2 and
foci (γ,−γ ) and(γ, γ ). The kink energy sum rule means, from this point of view, that all
the other curves giving NTK2 kinks have lengths equal to the perimeter of this rectangle.
Therefore, there is a visual or graphic procedure to compute kink energies.

3.1. Kink manifold of model A

In this model the action for the mechanical system is:

JA =
∫

dτ

{
1

2

dfa
dτ
· dfa

dτ
+ fbfb

2
(fafa − 1)2+ σ 2f 2

2

(
fafa − 1+ σ

2

2

)}
and the particle motion equations are:

d2fc

dτ 2
= fc(fafa − 1)(3fbfb − 1)+ 2σ 2

(
fcf

2
2 + δc2f2

(
fafa − 1+ σ

2

2

))
(15)

to be solved together with the asymptotic conditions:

lim
τ→±∞ fa(τ ) = v

A
a lim

τ→±∞
dfa
dτ
= 0 vA

a = {v(±1)
A , v

(±i)
A , v

(0)
A }. (16)
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The phase space of the dynamical system is the cotangent bundleT ∗M to the
configuration spaceM:

M = R2− {(−∞, σ ] t [−σ,∞)} ∼= R+ × S1 t R+ × S1

where∼= means that both sides of the identity are homeomorphic,R+ is the set of positive
real numbers andS1 is a circle. Three reasons may be invoked to account for this awkward
choice of configuration space: (a) trajectories in the real axis,φ2 = 0, aree×Z2 invariant;
they are singular in the moduli space of solutions. (b) The Hamiltonian flow is undefined

at the pointsφ2 = 0, φ1 = ±σ , the foci of the ellipseφ2
1+ φ2

2
1−σ 2 = 1. (c) As a consequence

of (a) and (b) a half line on theφ1-axis starting atφ1 = ±σ must be subtracted. There are
two possible choices, depending on the asymptotic behaviour; this amounts topologically to
substract fromR2 infinitesimally small disks centred on the foci.

The mechanical Hamiltonian

IA
1 =

1

2
papa − 1

2
fbfb(fafa − 1)2− σ 2f 2

2

(
fafa − 1+ σ

2

2

)
yields the canonical equations

dfa
dτ
= {IA

1 , fa}
dpa
dτ
= {IA

1 , pa}.

Obviously dIA
1

dτ = 0, but, as in the MSTB model, there is a second invariant

IA
2 =

1

2
{(f1p2− f2p1)

2− σ 2p2
2} −

σ 2

2
f 2

2 (σ
2f 2

1 − (f 2
1 + f 2

2 − 1+ σ 2)2) (17)

dIA
2

dτ = 0, which is in involution with the Hamiltonian:{IA
1 , I

A
2 } = 0. The dynamical system

is completely integrable. The trajectories with the asymptotic behaviour (16) provide all
the kinks of the model forming a one-dimensional manifold.

Suitable coordinates inMA are elliptic as in the configuration space of the MSTB
model. Notice that the choice of elliptic coordinates enjoys the same pathologies as our
configuration space above; in particular, there is an angular coordinate and a real positive
one. The ‘action’JA is

JA =
∫

dτ

{
1

2
(u2− v2)

[(
du

dτ

)2

+
(

dv

dτ

)2
]

+ 1

2(u2− v2)
[u2(u2− σ 2)(1− u2)2+ v2(σ 2− v2)(1− v2)2]

}
in the new variables. The Hamiltonian

hA = hA
u + hA

v

u2− v2
= [((u2− σ 2)p2

u − u2(u2− σ 2)(1− u2)2)

+((σ 2− v2)p2
v − v2(σ 2− v2)(1− v2)2)][2(u2− v2)]−1

is separable and model A is a Liouville mechanical system of type I, see [12]. In the
phase-space submanifold determined byhA = iA1 , we havehA

u − iA1 = −hA
v − iA1 = iA2 ,

whereiA2 is another constant. As in the MSTB model,iA1 = IA
1 while

iA2 = −I1− IA
2 σ

2.

The Hamilton–Jacobi equation

∂JA

∂τ
+HA

(
∂JA

∂u
,
∂JA

∂v
, u, v

)
= 0
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is completely separable

1

2
(u2− σ 2)

(
dJA

u

du

)
− 1

2
u2(u2− σ 2)(1− u2)2− iA1 u2 = iA2

1

2
(σ 2− v2)

(
dJA

v

dv

)
− 1

2
v2(σ 2− v2)(1− v2)2+ iA1 v2 = −iA2

(18)

if JA = JA
u (u)+JA

v (v)−iA1 τ . Given the solutions of equation (18) one obtains the equations
and the ‘time’-table for the trajectories from

∂JA

∂iA2
= γ A

1
∂JA

∂iA1
= γ A

2

whereγ A
1 andγ A

2 are real constants.JA < +∞ occurs if and only ifiA1 = iA2 = 0 and the
solitary waves of model A are given by:

e2σ 2(1−σ 2)γ A
1 =

[
u2− σ 2

(1− u2)σ
2
u2(1−σ 2)

]signu̇ [
σ 2− v2

(1− v2)σ
2
v2(1−σ 2)

]sign(v̇v)

.

The model A kink manifold is thus parametrized byγ A
1 and the signs oḟu andvv̇. Also(

u2− σ 2

1− u2

)signu̇ (
σ 2− v2

1− v2

)sign(vv̇)

= e2(1−σ 2)(γ A
2 +τ)

tells us howu and v depend onτ for the finite action trajectories and/or howu and v
depend onx for the kink configurations.

The Hamiltonian flow

du

dv
= sign(u̇)u(1− u2)(u2− σ 2)

sign(vv̇)v(1− v2)(σ 2− v2)

is undefined at the points

u v u v

v1 = v(−1)
A : 1 −σ f+ : σ σ

v2 = v(−i)A : 1 0 f− : σ −σ
v3 = v(0)A : σ 0
v4 = v(+i)A : 1 0
v5 = v(+1)

A : 1 σ

asymptotic points conjugate points.

The ground states of the field theoryv1, v2, v3, v4, v5 are unstable points of the
Hamiltonian flow, asymptotically reached by an infinite number of trajectories. We order
these points from left to right and from down to up in the Cartesian plane, see figure 2. On
the other points where the flow is undefined, the focif± of the ellipse, an infinite number
of trajectories starting and ending atv2 andv4 intersect; therefore,f+ andf− are conjugate
points tov2 andv4. We know from numerical analysis that all the trajectories in this model
are heteroclinic, see figure 2.

As a novelty with respect to the MSTB model, there are two families that depend on
the axis where the asymptotic points are located. This, in turn depends on the relative signs
of v̇ andvv̇.
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Figure 2. Kink trajectories in model A. (a) Trajectories fromv1 and v3 that terminate atv3

andv5 in the Cartesian plane. (b) Same trajectories in the elliptic plane. (c) Paths starting from
v2 that end atv4 drawn in the Cartesian plane. Note that the two foci are conjugate points to
v2. (d) Same paths in the elliptic plane.

• Family I, plotted in figures 2(a) and (b). In this case sigṅu = − sign(vv̇) and γ A
1

labels each family member according to its tangent at the asymptotic points.γ A
2 provides

the ‘velocity’ of the trajectory and the starting point is determined by sign(u̇).
• Family II, plotted in figures 2(c) and (d). Now signu̇ = sign(vv̇), andγ A

1 gives the
tangent of each trajectory at the foci andγ A

2 chooses the velocity. As above, the starting
point is fixed by sign(u̇).

From the point of view of field theory, all these trajectories correspond to solitary waves
living in CαβA , whereαβ are: (13), (53), (42) and their opposites (31), (35), (24). All of them
are topological kinks of two components or their antikinks. Denoting one such subfamily
by TK2[αβ; γ A

1 ], the topological charges are:
• TK2[31; γ A

1 ] ∈ C31
A and TK2[53; γ A

1 ] ∈ C53
A have:QT

1 = 1, QT
2 = 0.

For TK2[13; γ A
1 ] ∈ C13

A and TK2[35; γ A
1 ] ∈ C35

A : QT
1 = −1, QT

2 = 0.
• For TK2[24; γ A

1 ] ∈ C24
A : QT

2 = +2 andQT
1 = 0.

We findQT
2 = −2 andQT

1 = 0 for TK2[42; γ A
1 ].

All the topological kinks, both in families I and II, come from trajectories that are
separatrices between bounded and unbounded motion in phase space; they arise when
I1 = I2 = 0 a boundary in phase space between unbounded levels sets of functionsIa = ca
and those stratified in invariant tori. The envelope of the separatrices, itself a separatrix,

is formed in this model by the ellipseφ2
1 + φ2

2
1−σ 2 = 1 and the interval on the vertical axis,

φ1 = 0, contained in the domain bounded by the ellipse. Note the difference with the MSTB
model where the envelope is only the ellipse.

The analysis suggests that as a trial orbit we should use the curve

φ2
1 +

φ2
2

1− σ 2
= 1 or u = 1 (19)

to search for the singular solutions of the Hamilton–Jacobi equations, the limitγ A
1 = ∞.

This affords analytical expressions for special topological kinks of two components in the
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Cartesian plane:

φTK2(x) = ±
√

1

2
(1+ tanh[±σ 2(x − x0)])± i

√
(1− σ 2)

2
(1− tanh[±σ 2(x − x0)]) (20)

which satify (19) and thus correspond to trajectories on the ellipse. There are eight distinct
kinks of this type classified according to the choice of sign in (20), TK2[14]∈ C14

A ,
TK2[12] ∈ C12

A , TK2[45] ∈ C45
A , TK2[25] ∈ C25

A and the corresponding antikinks. For
this, bothQT

1 andQT
2 are different from zero. For instance,QT

1(C14
A ) = 1 andQT

2(C14
A ) = 1.

Restriction to the imaginary axis immediately gives one-component topological kinks:

φTK1(2)(x) = ±i

√
(1− σ 2)

2
(1+ tanh[±(x − x0)]. (21)

There are four kinks of this type, TK1(2)[43] ∈ C43
A , TK1(2)[32] ∈ C32

A , plus the two
antikinks, for which onlyQT

2 is non-null.
Finally, we restrict the system to the real axis to find the last type of one-component

topological kinks:

φTK1(1)(x) = ±
√

1
2(1+ tanh[±(x − x0)]. (22)

For TK1(1)[13] ∈ C13
A , TK1(1)[35] ∈ C35

A and the antikinksQT
1 6= 0 butQT

2 = 0.
As in the MSTB model, the energy of any kink is the action of the corresponding

trajectory:EA = JA
u + J A

v .

EA = sign(u̇)
∫
u(1− u2) du+ sign(vv̇)

∫
v(1− v2) dv.

We obtain:

EA(TK1(1)) =
√

2m3

4λ2
EA(TK1(2)) =

(
1

4
− σ

2

2

(
1− σ

2

2

)) √
2m3

λ2

EA(TK2) = σ 2

2

(
1− σ

2

4

) √
2m3

λ2
EA(TK2[13; γ A

1 ])) =
√

2m3

4λ2

EA(TK2[24; γ A
1 ])) =

√
2m3

2λ2

and therefore the kink energy sum rules, designating by TK2I , the kinks inC13
A C34

A , and by
TK2II those inC42

A ,

EA(TK1(1)) = EA(TK2)+ EA(TK1(2)) = EA(TK2I [γ
A
1 ]) (23)

EA(TK2II [γ
A
1 ]) = 2EA(TK2I [γ

A
1 ]) = EA(TK1(2))+ EA(TK1(1))+ EA(TK2). (24)

Again, these kink energies and sum rules can be read directly from the diagrams in
figure 2 in the elliptic plane, simply by measuring the length of the trajectories with respect
to the Jacobi metric, which is the same forevery curve with equal starting and ending
points.

The sum rules for the kink energies contain a great deal of information. TK1(1)
and TK2+ TK1(2) appear at the singular limits,γ A

1 → ±∞ and can be included
in family I because of the identity in the energies (23). TK1(1) is special because it
exhibits more symmetry than the others members in TK2I [γ A

1 ]. From (24) we interpret
TK1(2)+ TK1(1)+ TK2 as arising in the limitsγ A

1 = ±∞ of the family TK2II [γ A
1 ].
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3.2. Kink manifold of model B

The action for the associated dynamical model is:

JB =
∫

dτ

{
1

2

dfa
dτ
· dfa

dτ
+ (4f 2

1 + f 2
2 − 1)2+ 4f 2

1 f
2
2

}
and the Euler–Lagrange equations are

d2f1

dτ 2
= 4f1[4(4f 2

1 + f 2
2 − 1)+ 2f 2

2 ]
d2f2

dτ 2
= 4f2[(4f 2

1 + f 2
2 − 1)+ 2f 2

1 ] (25)

and finite action trajectories show the asymptotic behaviour:

lim
τ 7→±∞ fa(τ ) = v

B
a (±∞) lim

τ 7→±∞
dfa
dτ
= 0 vB = {v(±1)

B , v
(±i)
B }. (26)

In this model, the configuration spaceMB is:

MB = R2− {(−∞, 0] t [0,+∞)} = R+ × R
for similar reasons to those explained in model A. In this case however, the flow is undefined
at the originφ1 = φ2 = 0. Therefore, parabolic coordinatesu ∈ (−∞,∞), v ∈ [0,∞)
such that

φ1 = 1
2(u

2− v2) φ2 = uv
should make model B more tractable. Note that the origin is the common focus of the
parabolas

φ2
2 = 1± 2φ1 or v = 1 and u = ±1.

Besides the Hamiltonian

IB
1 = 1

2papa − (4f 2
1 + f 2

2 − 1)2− 4f 2
1 f

2
2

generating the ‘time’ evolution,

ḟa = {IB
1 , fa} ṗa = {IB

1 , pa} ˙IB
1 = 0

there is a second invariant,̇IB
2 = 0,

IB
2 = (f1p2− f2p1)p2+ 4f1f

2
2 (2f

2
1 + f 2

2 − 1)

in involution with IB
1 , {IB

1 , I
B
2 } = 0. Therefore, the dynamical system is completely

integrable. Observe that the first term inIB
2 is a certain projection of the angular over

the linear momentum:w = −j12(p ∧ e1)e2.
In the field theory framework, we have quadratic functions of the time- and/or space-

derivatives of the fields,

L2 =
(
φ1
∂φ2

∂x0
− φ2

∂φ1

∂x0

)
· ∂φ2

∂x0
+ 4φ1φ

2
2(2φ

2
1 + φ2

2 − 1)

I2 =
(
φ1
∂φ2

∂x1
− φ2

∂φ1

∂x1

)
· ∂φ2

∂x1
+ 4φ1φ

2
2(2φ

2
1 + φ2

2 − 1)

with some nonlinear dependence of the form:

F

(
∂L2

∂x0
,
∂I2

∂x0

)
= 0.

Unlike the MSTB model, there is no limit where this identity becomes a linear continuity
equation. We have not written a similar relation in model A because the situation is identical
to that of the MSTB model.
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The actionJB in parabolic coordinates is:

JB =
∫

dτ

{
1

2
(u2+ v2)

[(
du

dτ

)2

+
(

dv

dτ

)2
]
+ 1

u2+ v2
[u2(u4− 1)2+ v2(v4− 1)2]

}
.

The Hamiltonian in the new variables reads

hB = hu + hv
u2+ v2

= [p2
u − 2u2(u4− 1)2] + [p2

v − 2v2(v4− 1)2]

2(u2+ v2)

wherepu = (u2+ v2)u̇ andpv = (u2+ v2)v̇.
The dynamical system associated with model B is a Liouville mechanical system of type

III according to the classification in [12]. In the phase space submanifold characterized by
hB = iB1 , we havehu − iB1 u2 = −hv + iB1 v2 = iB2 . Obviously,iB1 = IB

1 while

IB
2 = −iB2 .

We now understand why the MSTB and A models depend on a continuous parameter
and there is no such freedom in model B; this is due to the characteristics of the coordinate
system in which the models are separable. Once the origin on the plane is fixed, a foliation
by confocal ellipses and hyperbolas requires the choice of foci. The common focus of the
parabolas in a parabolic system can be chosen, however, as the origin.

The Hamilton–Jacobi equation

∂JB

∂τ
+HB

(
∂JB

∂u
,
∂JB

∂v
, u, v

)
= 0

becomes completely separable by writingJB = JB
u (u)+ J B

v (v)+ iB1 τ :

1

2

(
dJB

1

du

)2

− u2(u4− 1)2− iB1 u2 = iB2
1

2

(
dJB

2

dv

)2

− v2(v4− 1)2− iB1 v2 = −iB2 .
(27)

From the solutions of (27), the equations and the ‘time’-table for the trajectories can be
immediately written:

∂JB

∂iB2
= γ B

1
∂JB

∂iB1
= γ B

2 (28)

where γ B
1 , γ B

2 are undetermined real constants. The finite actionWB < +∞ requires
0= iB1 = iB2 in (28) and the kinks of model B correspond to solutions of the equations:(

u4

1− u4

)sign(uu̇) (
1− v4

v4

)signv̇

= e4
√

2γ B
1

so that the kink manifold of model B is parametrized byγ B
1 and the sign ofuu̇. The ‘time’

evolution of each trajectory is scheduled according to the equation:(
1+ u4

1− u4

)sign(uu̇) (
1+ v4

1− v4

)sign(v̇)

= e4
√

2(γ B
2 +τ).

The Hamiltonian flow

dv

du
= sign(v̇)v|1− v4|

sign(uu̇)u|1− u4|
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Figure 3. (a) Stable kink trajectories in model B. (b) Unstable kink trajectories in model B.

is undefined at the points

v u v u

v4 = v(+1)
B : 1 0 f : 0 0

v3 = v(+i)B : 1 1
v2 = v(−i)B : 1 −1
v1 = v(+1)

B : 0 1

asymptotic points conjugate point.

Again, the ground statesv1, v2, v3, v4 of the field theory are unstable points of the
Hamiltonian flow ordered from left to right and from down to up in the Cartesian plane,
see figure 3: an infinite number of trajectories of finite actionJB asymptotically reach those
points. The focus of the parabolasφ2

2 = 1± 2φ1, the origin, is crossed by infinite paths
with endpoints inv3 andv4 and thusf is a conjugate point tov2 andv4. As in model A,
numerical analysis shows that all the trajectories are heteroclinic, see figure 3. There are
also two families of orbits depending on the relative signs ofuu̇ and v̇.
• Family I, plotted in figure 3(a). Here sign(uu̇) = − sign(v̇). The parametersγ B

1 and
γ B

2 play exactly the same role as their cousinsγ A
1 andγ A

2 in family I of model A.
• Family II, plotted in figure 3(b). Now sign(uu̇) = sign(v̇) and the situation is parallel

to that for family II in model A.
In (1 + 1)-dimensional field theory all these trajectories give rise to solitary ways.

Bearing in mind the same notation as in model A, we have the families of topological kinks
of two components.
• TK2[14, γ B

1 ] ∈ C14
B , TK2[41, γ B

1 ] ∈ C41
B with topological chargesQT

1 = ±1 and
QT

2 = 0.
• TK2[23, γ B

1 ] ∈ C23
B , TK2[32, γ B

1 ] ∈ C32
B and topological chargesQT

2(C23
B ) = 2 =

−QT
2(C32

B ), Q
T
1(C23

B ) = QT
1(C32

B ) = 0.
All the topological kinks come from separatrices in the dynamical system. The envelope

of the separatrices is given by the portion of the parabolaφ2
2 = 1− 2φ1 contained in the
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domain bounded byφ2
2 = 1+ 2φ1 plus the portion of the parabolaφ2

2 = 1+ 2φ1 starting
and ending at the curveφ2

2 = 1− 2φ1.
We use the parabolas

φ2
2 = 1± 2φ1 or v = 1 and u = 1

as trial orbits to find the singular solutions of the Hamilton–Jacobi equations at the limit
γ B

1 = ∞. We find analytic expressions for two-component topological kinks living on the
parabolas:

φTK2(x) = ± 1
4(1− tanh[±2

√
2(x − x0)])± i

√
1
2(1+ tanh[±2

√
2(x − x0)]).

There are eight distinct kinks of this type:
TK2[13] ∈ C13

B , TK2[34] ∈ C34
B , TK2[12] ∈ C12

B , TK2[24] ∈ C24
B plus the four antikinks.

For this, bothQT
1 andQT

2 are different from zero. For instance,QT
1(C13

B ) = 1,QT
2(C13

B ) = 1.
One-component topological kinks also exist and are obtained by either restricting

ourselves to the imaginary or the real axis:

φTK1(2)(x) = i tanh[±
√

2(x − x0)]

φTK1(1)(x) = 1
2 tanh[±2

√
2(x − x0)].

We have TK1(2)[32] ∈ C32
B plus the antikink and TK1(1)[14] ∈ C14

B and its antikink.
Note that in model B theφa-axis is not an envelope of the separatrices.

The energy of any kink is the action of the corresponding trajectory:EB = JB
1 + J B

2 .

EB =
√

2 sign(uu̇)
∫
u(u4− 1) du+

√
2 sign(v̇)

∫
v(v4− 1) dv.

We find

EB(TK2) = 2

3

m3

λ2
EB(TK1(1)) = EB(TK2[14; γ B

1 ]) = 4

3

m3

λ2

EB(TK2[23; γ B
1 ]) = 8

3

m3

λ2
EB(TK1(2)) = 8

3

m3

λ2

and the following kink energy sum rules:

2EB(TK2) = EB(TK2[14; γ B
1 ]) = EB(TK1(1))

EB(TK2[23; γ B
1 ]) = EB(TK1(2)) = 2EB(TK2[14; γ B

1 ]).

The kink energy sum rules can immediately be visualized in figures 3(a) and (b) because
the energies are exactly given by the lengths of the corresponding trajectories with respect
to the corresponding Jacobi metric. There are also singular limits that we summarize as
follows.

In family I, the limits γ B
1 →±∞ include TK1(1) as well as either TK2[13]+TK2[34]

or TK2[12]+ TK2[24], because the first kink energy sum rule.
In family II, the analogous limits correspond to either TK2[24]+TK1(1)[41]+TK2[13]

or TK2[21]+ TK1(1)[14]+ TK2[43], according to the other sum rule.

4. Further comments

We have not dealt with the important issue of kink stability in this paper. In general, the
solitary waves are not stable if the corresponding trajectories cross any conjugate point. In
quantum theory there arebona fidequantum states built on the classical kinks only if they
are stable. In that case it is possible to compute the mass and the wave functionals of the
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quantum kinks along the lines put forward in [14] for the MSTB solitons. The analysis was
based on study of Morse Theoryà la Bott for the configuration space of the MSTB model.
Moreover, the Witten–Smale version of Morse theory as implemented in [16] allowed us
to compute the decay amplitudes of the non-stable kinks in the MSTB. It seems plausible
that similar ideas would work for the kinks of models A and B with small variations and
we plan to develop the Morse theory of models A and B in future research.

In order to compute the quantum kink mass of conventional kinks, supersymmetry
helps because it sometimes supresses quantum corrections and the classical result is exact.
This suggests that the supersymmetric extension of models A and B, if possible, would
permit easy computation of the properties of the quantum kinks, enlarging the manifold of
supersymmetric models with important topological content.

Finally, we understand that models A and B are by no means unique. First, it is not
difficult to obtain field models with associated mechanical problems which are dynamical
systems of Liouville type II and IV, i.e. separable by using either Cartesian or polar
coordinates. In a similar vein, there are models of type A and B generalizing models
A and B, i.e. with associated mechanical systems separable respectively in elliptic and
parabolic coordinates, with a richer structure of kink manifolds.
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